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We show that the set of semi-Lipschitz functions, defined on a quasi-metric space
(X, d), that vanish at a fixed point x, € X can be endowed with the structure of a
quasi-normed semilinear space. This provides an appropriate setting in which to
characterize both the points of best approximation and the semi-Chebyshev subsets
of quasi-metric spaces. We also show that this space is bicomplete.  © 2000 Academic
Press
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1. INTRODUCTION AND BASIC RESULTS

Motivated, in part, for their applications to computer science (see for
instance [ 16, 27, 30]), the theories of completeness, (pre)compactness, and
extension of quasi-uniform and quasi-metric spaces have received a certain
attention in the recent years (see, among other contributions, [ 1, 2, 4, 14,
24, 31, 327]). These advances have also permitted the development of
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generalizations, to the “nonsymmetric case,” of classical mathematical
theories: hyperspaces [ 15, 22, 33], function spaces [ 13, 20, 21, 23, 26],
approximation and fixed point theory [6, 7, 25], linear lattices [ 3], etc.

This paper is a contribution to the study of semi-Lipschitz functions and
best approximation from a nonsymmetric point of view. In searching for
the category of domains of computation, quasi-metric spaces, along with
certain closely related categories, are worthy of consideration. Usually, a
metric gives us no means of expressing the ordering of information; while,
if all we have is the ordering, only qualitative distinctions can be expressed.
A way out of this dilemma is to move to quasi-metric (or quasi-uniform)
spaces. In addition, computer science provides an abundance of examples
which can be of help in obtaining the theory of limits and completeness for
quasi-metric and quasi-uniform spaces (see, for example, [ 28, 29]). Given
a quasi-metric space we introduce and study a type of generalized Lipschitz
functions. In particular, we show that the family of such functions admits
a structure of bicomplete quasi-normed space. In the final part of the paper
we show how this structure provides an appropriate setting to characterize
both the points of best approximation and the semi-Chebyshev subsets of
a quasi-metric space. In this way our results generalize the metric theory of
Lipschitz functions [ 8] and best approximation [ 17-197.

In this paper, a quasi-metric on a set X will be a function d: X x X —
[0, c0) such that for all x, y, z€ X:

(i) dx, y)=dy,x)=0=x=y,
(il) d(x, y)<d(x,z)+d(z, y).

If d can take the value oo then it is called an extended quasi-metric
on X. Each (extended) quasi-metric d induces another (extended) quasi-
metric d ! (defined by d ~!(x, y) =d(y, x) for all x, y € X) called the con-
jugate of d. Therefore the function d° defined on X'x X by d%x, y)=
max{d(x, y),d ~!(x, y)} is a(n) (extended) metric on X.

By (extended) quasi-metric space we mean a pair (X, d) where X is a set
and d is a(n) (extended) quasi-metric on X.

Each extended quasi-metric d on X induces a topology 7(d) on X which
has as a base the family of balls {B,(x,r): xe X, r>0} where B,(x,r)=
{yeX:d(x, y)<r}. A topological space (X, T) is called quasi-metrizable if
there is a quasi-metric d on X such that 7T(d)=T. In this case we say that
d is compatible with 7. We remark that the topology 7(d) is T\,. Moreover,
if condition (i) above is replaced by the condition d(x, y) =0<> x = y, then
T(d) is a T; topology. In this case the pair (X, d) is said to be a(n)
(extended) T, quasi-metric space. See [5] for more information about
quasi-metric spaces. A(n) (extended) quasi-metric d is said to be bicom-
plete if d° is a complete (extended) metric.
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A semilinear space (or semivector space) on R* (the set of all positive
real numbers) is a triple (X, +, ) such that (X, +) is an Abelian semi-
group with neutral element 0 € X and - is a function from R* x X into
X which satisfies for all x, ye X and a,beR™*: (i) a-(b-x)=(ab)-x,
(i) (a+b)-x=(a-x)+(b-x), (iii)) a-(x+y)=(a-x)+(a-y), and (iv)
1-x=ux. (See [11] for related structures). As usual, whenever an element
x € X admits an inverse it is unique and is denoted —x.

According to [3] a quasi-norm on a semilinear space (X, +,-) on R*
is a function |.|: X— [0, o0) such that for all x, yeX and aeR™:
(i) x=0< —xeX and |x|=|—x| =0, (ii)) |la-x||=a|x]|, and (iii)
Ix+ yll <lx| + |lyll. The pair (X, ||.|) is then called a quasi-normed semi-
linear space.

Let (X, d) be a quasi-metric space. A function f; X — R is said to be semi-
Lipschitz if there exists k>0 such that f(x)— f(y)<kd(x, y) for all
x, y € X. Clearly, every semi-Lipschitz function is lower semicontinuous.

A real-valued function f defined on a quasi-metric space (X, d) is said to
be < ;-increasing if f(x) < f(y) whenever d(x, y) =0. Note that every semi-
Lipschitz function on (X, d) is < ,-increasing and every real-valued func-
tion defined on a 7, quasi-metric space (X, d) is < ;-increasing.

Now let (X, d) be a quasi-metric space and fix x, € X. Put

SL(d) =

{f: X—-R| fis < -increasing, sup < 0, f(xq) =0}.
d(x, y)#0 d(xa J’)

It is straightforward to see that ¥%,(d) is exactly the set of all semi-

Lipschitz functions on (X, d) that vanish at x,.

If for all £, g€ S%(d) and aeR* we define f + g and a-f in the usual
way, then it is routine to show that (% (d), +, -) is a semilinear space on
R™.

Furthermore, the function |||, defined on S%,(d) by

= sup SH=/GDVO

d(x, y)#0 d(x, y)

is clearly a quasi-norm on Y%y (d), so that (¥%(d), ||.|,) is a quasi-
normed semilinear space.
In addition, the function p,; defined on L% (d) x SL\(d) by

pa(f. &)= sup (f=8)x) = (f=2)(») v O

d(x, y)#0 d(xa y)
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is an extended quasi-metric on Y%, (d). Notice that p,(f, g) agrees with
I/ — gl whenever f —g e S%(d).

The following example shows that the Abelian semigroup (¥%(d), +),
which has a neutral element, is not in general a group. Moreover p, is not
necessarily a quasi-metric.

ExampLE 1.1. Let d be the T, quasi-metric defined on R by d(x, y)=
x—y if x>y and d(x, y)=1 otherwise. Then 7(d) is the Sorgenfrey
line. Let x,=0. If we denote the identity function on R by id, then ide
S % (d) because supx;éy(x(,?)i)y\{ 9—1. However, —id¢ S %(d) because
supx,&y(ya[;f)yj %— o0. So p,(0, id) = oo, where 0 denotes the function on R

that vanishes at every xeR.

Several properties of the quasi-normed spaces of semi-Lipschitz functions
(completeness and compactness, characterization for it to be a Banach
space, etc.) will be discussed elsewhere. However, in order to point out the
analogy between the symmetric case and the nonsymmetric one, we include
here a basic property on completeness of p; which may be considered as an
analogous result to the corresponding theorem for the normed linear space
of Lipschitz functions on a metric space, obtained by Johnson in [8].

THEOREM 1.2. p, is a bicomplete extended quasi-metric on FLy(d).

Proof. Let { f,},-. be a Cauchy sequence in (S %(d), p%). Then, given
e>0 there is ny<w such that p,(f,, f.) <e¢ and pu(f,., f,) <e for
m, n = n,. Therefore

wp  Un= S0 = U= £

d(x, y)#0 d(xo y)

<e, forall n,m=n,. (%)

Then |f,(x)— f..(x)| <ed’(x, x,) for all xe X and for all n, m =n,.

It follows that there is a function fi X — R such that the sequence
{fu} n<ew is pointwise convergent to f with respect to the usual metric on
R. We shall show that f'is in ¥%y(d) and that { f,}, _,, converges to f with
respect to the topology 7{(p?). For this in turn, first notice that, f being
the pointwise limit of a sequence of < ,-increasing functions, it is also
< s-increasing. On the other hand, since the sequence {(f,(x)—
So(¥)/ d(x, y)} <o converges to (f(x)—f(y))/d(x, y) with respect to the
usual metric on R whenever d(x, y) #0, for the given ¢ >0, for n>n, and
for x, ye X with d(x, y)#0, there exists m > n such that

|(f =fo)(X) = (f =f) (V)
d(x, y)

<eé.
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So, by the triangle inequality and condition ()

|(f =f)(X) = (f =S WD)I
d(x, y)

<2 ()
whenever n > n, and d(x, y)#0. It follows from (xx) that

0
<2+ [ foglla

sup
d(x, y)#0 d(x, y)

So feS%(d). Finally, it also follows from (%) that the sequence
{p5(fs fu)} n<w converges to zero and the proof is complete. ||

2. ON BEST APPROXIMATION IN QUASI-METRIC SPACES

Let (X, d) be a quasi-metric space and let y € Y = X. We shall denote by
cly{y} the closure {x: d(x, y)=0} of the subset { y} in the topology 7(d).
As usual, d(p, Y) shall denote inf {d(p, y) | ye Y} for each pe X.

DeriNiTION 2.1. Let (X, d) be a quasi-metric space. Let Y< X and
peX. An element y, e Y such that d(p, Y)=d(p, y,) is said to be an
element of best approximation to p by elements of Y.

Note that if d(p, y,) =0 for some y, € Y then y, is obviously a trivial
element of best approximation to p by elements of Y. Therefore we focus
our interest on those points p¢ J{c/y{y} | ye Y}.

ProrosiTION 2.2. Let (X, d) be a quasi-metric space. Let Y X, xo€ Y
and p¢ J{clx{y} | ye Y}. Then yy € Y is an element of best approximation
to p by elements of Y if and only if there is an f € S Ly (d) such that

() 1fllz=1,
(2) fixr=0,
(3) d(p, yo)=f(p)—f(yo)

Proof. If p¢U{clx{y}lyeY} and y,eY is an element of best
approximation to p by elements of Y define f/: X — R by f(x)=d(x, Y).
Then f,y=0. On the other hand, given two points x, z € X with d(x, z) =0,
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the triangle inequality say us that d(x, y) <d(z, y) for each y€ Y, that is,
d(x, Y)<d(z, Y). Thus, fis a < ,-increasing function. In addition,

wp LD =SGNVO_ s ) —dy. 1) v O
d(x, y)#0 d(xa y) d(x, y)#0 d(xn J’)
< d(x, y)
< Sup

d(x, y)#0 d(xa J/) ’

so that f'e ¥%(d) and | f| ;< 1. We shall show that actually ||f||,=1. In
fact, since f(p) — f(yo) =d(p, Y)=d(p. yo) and d(p, y,) >0,

(f(p)=f(yo)) vO _d(p, Y)
d(p, yo) d(p, yo)

=1,

so that | f|,= 1.
Conversely, for each ye Y,

d(p, v) = |f ladip )= f URA

Therefore, for each ye Y,

d(p, y)= f(p)—f(y)=f(p)—f(yo)=d(p, yo)

by (3), which proves that y, is an element of best approximation to p by
elements of Y. |

Let (X, d) be a quasi-metric space, Y < X and x, € Y. Let
Yo={f:X->R| feSL(d)and f,y=0},
and let us define for each x, y € X such that d(x, y) #0,

(S(x) =)
Hf“d

Then dYO(x y)<d(x, y). In fact, for all fe SL(d), (f(x)—f(y)) vO<

I.fla d(x, y) since d(x, y) #0. Thus, ((f(x)—f(p)) v 0)/|lf]4<d(x, y) for
feSL(d), || f]la#0. Hence,

{(f( x)— /()
Hf“d

dy(x, ) = sup { ‘ fe Yoand /], #0}

dyy(x, y) <sup f SZy(d) and |f|d¢0} d(x, y).

We now have the following result.
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PropOSITION 2.3. Let (X, d) be a quasi-metric space. Let Yc X, xo€ Y
and p¢ J{clx{y} | ye Y}. Then y, € Y is an element of best approximation
to p by elements of Y if and only if dy(p, yo) =d(p, yo).

Proof. Let y, € Y be an element of best approximation to p by elements
of Y. By Proposition 2.1 there is feY, such that |f||,=1 and
d(p, yo) = f(p) = f( o). Therefore

(g(p)—8(yo)) v O
lgll 2

>(f(p) —f(3)) v O _
11l

Since dy,(p, yo) <d(p, yo), we conclude that dy, (p, yo) =d(p, y).
Conversely, for all ye Y,

dYo(pa yO):Sup{ gEYO> |g|d7é0}

d(p, yo).

(f(p)=f(yo) v O
1/ 1

d(p. o) = dyyp. yo) = sup { ]fe You If . ;éO}

sup {UP) S VO
e

so that y, € Y is an element of best approximation to p by elements of Y. ||

‘fe Yoo If 1 ;ﬁo} —dy(p. ) <d(p, )

Let Y be a (nonempty) subset of a quasi-metric space (X, d). For each
p¢ Y we shall denote by Py(p) the set of all best approximation to p
by elements of Y. A (nonempty) set Y< X such that X\U{c/y{y} |
yeY} # is said to be semi-Chebyshev if card Py(p)<1 for each

pEUlclx{y} | yeY).

ProprosITION 2.4. Let Y be a (nonempty) subset of a quasi-metric space
(X,d). Let MY, xoeY and p¢ U{clx{y} | ye Y}. Then M < Py(p) if
and only if there is an e S%y(d) such that

() Ifla=1,
(2) fir=0,
(3) dp,y)=S(p)—f(y) for all ye M.
Proof. Suppose M < P(p). Fix y, € M. By Proposition 2.2 there exists

feP%(d) satisfying (1), (2) and d(p, yo) = f(p)— f(yo). Let ye M. Then

d(p, y)=d(p, Y)=d(p, yo), so d(p, y)=f(p)—f(yo). Since fiy=0 we
obtain that d(p, y) = f(p) = f(p) — f(»).
Conversely, suppose that there exists f'e S%(d) satisfying (1), (2) and

(3) and let y, € M. By Proposition 2.2, y, € Py(p). Hence M = Py(p). |
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The next proposition follows easily from Proposition 2.3.

ProrosITION 2.5. Let Y be a (nonempty) subset of a quasi-metric space
(X,d). Let McY, xoe€Y and p¢ Y. Then M < Py(p) if and only if

dy, (p, y)=d(p, y) for all ye M.

As an immediate consequence of Proposition 2.4 we obtain the following
characterization of semi-Chebyshev sets in a quasi-metric space (compare
with [18, 19]).

ProrosITION 2.6. Let (X,d) be a quasi-metric space. Let Y< X and
xo €Y. Then Y is semi-Chebyshev if and only if there does not exist
feS%(d),x,eXand y,, y, €Y, y, # y,, such that

(D flla=1,
(2) fi¥=0,
(3) flxy)=d(xy, 1) =d(xy, y,).
In the following example we shall apply the above results in order to
characterize the sets Py(p) in the Khalimsky line. The Khalimsky line is an
interesting quasi-metric space in digital topology (see [9, 10, 12]). The

Khalimsky line is the set Z of integers endowed with the topology induced
by the quasi-metric d defined as follows:

0 if x=y
d(x, y)=+0 ifx=2nand y=2n+1ory=2n—1whereneZ,
1 otherwise.

It is an easy matter to see that for each x, € Z, % (d) is exactly the set
of all bounded < ,-increasing functions on Z.

ExampLE 2.2. Let (X,d) be the Khalimsky line. Let Y< X and let
péU{cly{y} | ye Y}. Fix x, € Y and define the function f from X into R
by f(x)=d(x, Y) for every xe X. As in the proof of Proposition 2.2,
feSL%(d) and | f|,=1. Since f|y =0 and d(p, y) = f(p) — f(y) whenever
ye Y, we conclude, by Proposition 2.4, that Y= P ,(p).

Next, if p¢ Y but pe U{cly{y} | ye Y}, then p is an even integer and
p+1orp—1arein Y. Thus, Py(p) is not empty and contains at most two
points.

Notice that, as Y= Py(p) whenever p¢ J{cly{y} | y€ Y}, the semi-
Chebyshev subsets in the Khalimsky line are the singletons.
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