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We show that the set of semi-Lipschitz functions, defined on a quasi-metric space
(X, d ), that vanish at a fixed point x0 # X can be endowed with the structure of a
quasi-normed semilinear space. This provides an appropriate setting in which to
characterize both the points of best approximation and the semi-Chebyshev subsets
of quasi-metric spaces. We also show that this space is bicomplete. � 2000 Academic

Press
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1. INTRODUCTION AND BASIC RESULTS

Motivated, in part, for their applications to computer science (see for
instance [16, 27, 30]), the theories of completeness, (pre)compactness, and
extension of quasi-uniform and quasi-metric spaces have received a certain
attention in the recent years (see, among other contributions, [1, 2, 4, 14,
24, 31, 32]). These advances have also permitted the development of
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generalizations, to the ``nonsymmetric case,'' of classical mathematical
theories: hyperspaces [15, 22, 33], function spaces [13, 20, 21, 23, 26],
approximation and fixed point theory [6, 7, 25], linear lattices [3], etc.

This paper is a contribution to the study of semi-Lipschitz functions and
best approximation from a nonsymmetric point of view. In searching for
the category of domains of computation, quasi-metric spaces, along with
certain closely related categories, are worthy of consideration. Usually, a
metric gives us no means of expressing the ordering of information; while,
if all we have is the ordering, only qualitative distinctions can be expressed.
A way out of this dilemma is to move to quasi-metric (or quasi-uniform)
spaces. In addition, computer science provides an abundance of examples
which can be of help in obtaining the theory of limits and completeness for
quasi-metric and quasi-uniform spaces (see, for example, [28, 29]). Given
a quasi-metric space we introduce and study a type of generalized Lipschitz
functions. In particular, we show that the family of such functions admits
a structure of bicomplete quasi-normed space. In the final part of the paper
we show how this structure provides an appropriate setting to characterize
both the points of best approximation and the semi-Chebyshev subsets of
a quasi-metric space. In this way our results generalize the metric theory of
Lipschitz functions [8] and best approximation [17�19].

In this paper, a quasi-metric on a set X will be a function d : X_X �
[0, �) such that for all x, y, z # X:

(i) d(x, y)=d( y, x)=0 � x= y,

(ii) d(x, y)�d(x, z)+d(z, y).

If d can take the value � then it is called an extended quasi-metric
on X. Each (extended) quasi-metric d induces another (extended) quasi-
metric d &1 (defined by d &1(x, y)=d( y, x) for all x, y # X) called the con-
jugate of d. Therefore the function d s defined on X_X by d s(x, y)=
max[d(x, y),d &1(x, y)] is a(n) (extended) metric on X.

By (extended ) quasi-metric space we mean a pair (X, d ) where X is a set
and d is a(n) (extended) quasi-metric on X.

Each extended quasi-metric d on X induces a topology T(d ) on X which
has as a base the family of balls [Bd (x, r): x # X, r>0] where Bd (x, r)=
[ y # X : d(x, y)<r]. A topological space (X, T) is called quasi-metrizable if
there is a quasi-metric d on X such that T(d )=T. In this case we say that
d is compatible with T. We remark that the topology T(d ) is T0 . Moreover,
if condition (i) above is replaced by the condition d(x, y)=0 � x= y, then
T(d ) is a T1 topology. In this case the pair (X, d ) is said to be a(n)
(extended ) T1 quasi-metric space. See [5] for more information about
quasi-metric spaces. A(n) (extended) quasi-metric d is said to be bicom-
plete if d s is a complete (extended) metric.
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A semilinear space (or semivector space) on R+ (the set of all positive
real numbers) is a triple (X, +, } ) such that (X, +) is an Abelian semi-
group with neutral element 0 # X and } is a function from R+_X into
X which satisfies for all x, y # X and a, b # R+: (i) a } (b } x)=(ab) } x,
(ii) (a+b) } x=(a } x)+(b } x), (iii) a } (x+ y)=(a } x)+(a } y), and (iv)
1 } x=x. (See [11] for related structures). As usual, whenever an element
x # X admits an inverse it is unique and is denoted &x.

According to [3] a quasi-norm on a semilinear space (X, +, } ) on R+

is a function &.&: X � [0, �) such that for all x, y # X and a # R+:
(i) x=0 � &x # X and &x&=&&x&=0, (ii) &a } x&=a &x&, and (iii)
&x+ y&�&x&+&y&. The pair (X, &.&) is then called a quasi-normed semi-
linear space.

Let (X, d ) be a quasi-metric space. A function f: X � R is said to be semi-
Lipschitz if there exists k�0 such that f (x)& f ( y)�kd(x, y) for all
x, y # X. Clearly, every semi-Lipschitz function is lower semicontinuous.

A real-valued function f defined on a quasi-metric space (X, d ) is said to
be � d-increasing if f (x)� f ( y) whenever d(x, y)=0. Note that every semi-
Lipschitz function on (X, d ) is � d-increasing and every real-valued func-
tion defined on a T1 quasi-metric space (X, d ) is � d -increasing.

Now let (X, d ) be a quasi-metric space and fix x0 # X. Put

SL0(d)=

{ f : X � R | f is �d -increasing, sup
d(x, y){0

( f (x)& f ( y)) 6 0
d(x, y)

<�, f (x0)=0=.

It is straightforward to see that SL0(d ) is exactly the set of all semi-
Lipschitz functions on (X, d ) that vanish at x0 .

If for all f, g # SL0(d) and a # R+ we define f +g and a } f in the usual
way, then it is routine to show that (SL0(d ), +, } ) is a semilinear space on
R+.

Furthermore, the function &.&d defined on SL0(d ) by

& f &d= sup
d(x, y){0

( f (x)& f ( y)) 6 0
d(x, y)

is clearly a quasi-norm on SL0(d ), so that (SL0(d ), &.&d) is a quasi-
normed semilinear space.

In addition, the function \d defined on SL0(d )_SL0(d ) by

\d ( f, g)= sup
d(x, y){0

(( f &g)(x)&( f &g)( y)) 6 0
d(x, y)
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is an extended quasi-metric on SL0(d ). Notice that \d ( f, g) agrees with
& f& g&d whenever f &g # SL0(d ).

The following example shows that the Abelian semigroup (SL0(d ), +),
which has a neutral element, is not in general a group. Moreover \d is not
necessarily a quasi-metric.

Example 1.1. Let d be the T1 quasi-metric defined on R by d(x, y)=
x& y if x� y and d(x, y)=1 otherwise. Then T(d ) is the Sorgenfrey
line. Let x0=0. If we denote the identity function on R by id, then id #
SL0(d) because supx{ y

(x& y) 6 0
d(x, y) =1. However, &id � SL0(d ) because

supx{ y
( y&x) 6 0

d(x, y) =�. So \d (0, id )=�, where 0 denotes the function on R
that vanishes at every x # R.

Several properties of the quasi-normed spaces of semi-Lipschitz functions
(completeness and compactness, characterization for it to be a Banach
space, etc.) will be discussed elsewhere. However, in order to point out the
analogy between the symmetric case and the nonsymmetric one, we include
here a basic property on completeness of \d which may be considered as an
analogous result to the corresponding theorem for the normed linear space
of Lipschitz functions on a metric space, obtained by Johnson in [8].

Theorem 1.2. \d is a bicomplete extended quasi-metric on SL0(d ).

Proof. Let [ fn]n<| be a Cauchy sequence in (SL0(d ), \s
d). Then, given

=>0 there is n0<| such that \d ( fn , fm)<= and \d ( fm , fn)<= for
m, n�n0 . Therefore

sup
d(x, y){0

|( fn& fm)(x)&( fn& fm)( y)|
d(x, y)

<=, for all n, m�n0 . (V)

Then | fn(x)& fm(x)|<=d s(x, x0) for all x # X and for all n, m�n0 .
It follows that there is a function f: X � R such that the sequence

[ fn]n<| is pointwise convergent to f with respect to the usual metric on
R. We shall show that f is in SL0(d ) and that [ fn]n<| converges to f with
respect to the topology T(\s

d). For this in turn, first notice that, f being
the pointwise limit of a sequence of �d -increasing functions, it is also
� d -increasing. On the other hand, since the sequence [( fn(x)&
fn( y))� d(x, y)]n<| converges to ( f (x)& f ( y))�d(x, y) with respect to the
usual metric on R whenever d(x, y){0, for the given =>0, for n�n0 and
for x, y # X with d(x, y){0, there exists m�n such that

|( f &fm)(x)&( f &fm)( y)|
d(x, y)

<=.
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So, by the triangle inequality and condition (V)

|( f &fn)(x)&( f &fn)( y)|
d(x, y)

<2= (VV)

whenever n�n0 and d(x, y){0. It follows from (VV) that

sup
d(x, y){0

( f (x)& f ( y)) 6 0
d(x, y)

�2=+& fn0
&d .

So f # SL0(d ). Finally, it also follows from (VV) that the sequence
[\s

d ( f, fn)]n<| converges to zero and the proof is complete. K

2. ON BEST APPROXIMATION IN QUASI-METRIC SPACES

Let (X, d ) be a quasi-metric space and let y # Y/X. We shall denote by
clX[ y] the closure [x: d(x, y)=0] of the subset [ y] in the topology T(d ).
As usual, d( p, Y) shall denote inf [d( p, y) | y # Y] for each p # X.

Definition 2.1. Let (X, d) be a quasi-metric space. Let Y/X and
p # X. An element y0 # Y such that d( p, Y)=d( p, y0) is said to be an
element of best approximation to p by elements of Y.

Note that if d( p, y0)=0 for some y0 # Y then y0 is obviously a trivial
element of best approximation to p by elements of Y. Therefore we focus
our interest on those points p � �[clX[ y] | y # Y].

Proposition 2.2. Let (X, d ) be a quasi-metric space. Let Y/X, x0 # Y
and p � �[clX[ y] | y # Y]. Then y0 # Y is an element of best approximation
to p by elements of Y if and only if there is an f # SL0(d ) such that

(1) & f &d=1,

(2) f |Y=0,

(3) d( p, y0)= f ( p)& f ( y0).

Proof. If p � �[clX[ y]| y # Y] and y0 # Y is an element of best
approximation to p by elements of Y define f : X � R by f (x)=d(x, Y).
Then f |Y=0. On the other hand, given two points x, z # X with d(x, z)=0,
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the triangle inequality say us that d(x, y)�d(z, y) for each y # Y, that is,
d(x, Y)�d(z, Y). Thus, f is a � d -increasing function. In addition,

sup
d(x, y){0

( f (x)& f ( y)) 6 0
d(x, y)

= sup
d(x, y){0

(d(x, Y)&d( y, Y)) 6 0
d(x, y)

� sup
d(x, y){0

d(x, y)
d(x, y)

,

so that f # SL0(d) and & f &d�1. We shall show that actually & f &d=1. In
fact, since f ( p)& f ( y0)=d( p, Y)=d( p, y0) and d( p, y0)>0,

( f ( p)& f ( y0)) 6 0
d( p, y0)

=
d( p, Y)
d( p, y0)

=1,

so that & f &d�1.
Conversely, for each y # Y,

d( p, y)=& f &d d( p, y)�
( f ( p)& f ( y)) 6 0

d( p, y)
d( p, y).

Therefore, for each y # Y,

d( p, y)� f ( p)& f ( y)= f ( p)& f ( y0)=d( p, y0)

by (3), which proves that y0 is an element of best approximation to p by
elements of Y. K

Let (X, d ) be a quasi-metric space, Y/X and x0 # Y. Let

Y0=[ f : X � R | f # SL0(d ) and f |Y=0],

and let us define for each x, y # X such that d(x, y){0,

dY0(x, y)=sup {( f (x)& f ( y)) 6 0
& f &d } f # Y0 and & f &d {0=.

Then dY0
(x, y)�d(x, y). In fact, for all f # SL0(d), ( f (x)& f ( y)) 6 0�

& f &d d(x, y) since d(x, y){0. Thus, (( f (x)& f ( y)) 6 0)�& f &d �d(x, y) for
f # SL0(d ), & f &d {0. Hence,

dY0
(x, y)�sup {( f (x)& f ( y)) 6 0

& f &d } f # SL0(d) and & f &d {0=�d(x, y).

We now have the following result.
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Proposition 2.3. Let (X, d ) be a quasi-metric space. Let Y/X, x0 # Y
and p � �[clX [ y] | y # Y]. Then y0 # Y is an element of best approximation
to p by elements of Y if and only if dY0

( p, y0)=d( p, y0).

Proof. Let y0 # Y be an element of best approximation to p by elements
of Y. By Proposition 2.1 there is f # Y0 such that & f &d=1 and
d( p, y0)= f ( p)& f ( y0). Therefore

dY0
( p, y0)=sup {(g( p)& g( y0)) 6 0

&g&d } g # Y0 , &g&d {0=
�

( f ( p)& f ( y0)) 6 0
& f &d

=d( p, y0).

Since dY0
( p, y0)�d( p, y0), we conclude that dY0

( p, y0)=d( p, y0).
Conversely, for all y # Y,

d( p, y0)=dY0
( p, y0)=sup {( f ( p)& f ( y0)) 6 0

& f &d } f # Y0 , & f &d {0=
=sup {( f ( p)& f ( y)) 6 0

& f &d } f # Y0 , & f &d {0==dY0
( p, y)�d( p, y),

so that y0 # Y is an element of best approximation to p by elements of Y. K

Let Y be a (nonempty) subset of a quasi-metric space (X, d ). For each
p � Y we shall denote by PY ( p) the set of all best approximation to p
by elements of Y. A (nonempty) set Y/X such that X"�[clX[ y] |
y # Y]{< is said to be semi-Chebyshev if card PY ( p)�1 for each
p � �[clX[ y] | y # Y].

Proposition 2.4. Let Y be a (nonempty) subset of a quasi-metric space
(X, d ). Let M/Y, x0 # Y and p � �[clX[ y] | y # Y]. Then M/PY ( p) if
and only if there is an f # SL0(d ) such that

(1) & f &d=1,

(2) f |Y=0,

(3) d( p, y)= f ( p)& f ( y) for all y # M.

Proof. Suppose M/PY ( p). Fix y0 # M. By Proposition 2.2 there exists
f # SL0(d ) satisfying (1), (2) and d( p, y0)= f ( p)& f ( y0). Let y # M. Then
d( p, y)=d( p, Y)=d( p, y0), so d( p, y)= f ( p)& f ( y0). Since f |Y=0 we
obtain that d( p, y)= f ( p)= f ( p)& f ( y).

Conversely, suppose that there exists f # SL0(d ) satisfying (1), (2) and
(3) and let y0 # M. By Proposition 2.2, y0 # PY ( p). Hence M/PY ( p). K
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The next proposition follows easily from Proposition 2.3.

Proposition 2.5. Let Y be a (nonempty) subset of a quasi-metric space
(X, d ). Let M/Y, x0 # Y and p � Y. Then M/PY ( p) if and only if
dY0

( p, y)=d( p, y) for all y # M.

As an immediate consequence of Proposition 2.4 we obtain the following
characterization of semi-Chebyshev sets in a quasi-metric space (compare
with [18, 19]).

Proposition 2.6. Let (X, d ) be a quasi-metric space. Let Y/X and
x0 # Y. Then Y is semi-Chebyshev if and only if there does not exist
f # SL0(d ), x1 # X and y1 , y2 # Y, y1 { y2 , such that

(1) & f &d=1,

(2) f |Y=0,

(3) f (x1)=d(x1 , y1)=d(x1 , y2).

In the following example we shall apply the above results in order to
characterize the sets PY ( p) in the Khalimsky line. The Khalimsky line is an
interesting quasi-metric space in digital topology (see [9, 10, 12]). The
Khalimsky line is the set Z of integers endowed with the topology induced
by the quasi-metric d defined as follows:

0 if x=y
d(x, y)={0 if x=2n and y=2n+1 or y=2n&1 where n # Z,

1 otherwise.

It is an easy matter to see that for each x0 # Z, SL0(d ) is exactly the set
of all bounded �d -increasing functions on Z.

Example 2.2. Let (X, d ) be the Khalimsky line. Let Y/X and let
p � �[clX[ y] | y # Y]. Fix x0 # Y and define the function f from X into R
by f (x)=d(x, Y) for every x # X. As in the proof of Proposition 2.2,
f # SL0(d ) and & f &d=1. Since f |Y #0 and d( p, y)= f ( p)& f ( y) whenever
y # Y, we conclude, by Proposition 2.4, that Y=PY ( p).

Next, if p � Y but p # �[clX[ y] | y # Y], then p is an even integer and
p+1 or p&1 are in Y. Thus, PY ( p) is not empty and contains at most two
points.

Notice that, as Y=PY ( p) whenever p � �[clX[ y] | y # Y], the semi-
Chebyshev subsets in the Khalimsky line are the singletons.
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